Call us toll-free

RuBisCo is actually a poor enzyme.

When RuBisCo catalyzes the attachment of CO2 to the 5-carbon RuBP, the Calvin cycle begins.

Approximate price

Pages:

275 Words

$19,50

Reactions are initiated to rebuild RuBP from PGA.

Soybean requires more nitrogen (N) than gramineous crops because it accumulates a large amount of N in seeds, and its photosynthetic rate per leaf N is low. The supernodulating genotype Sakukei 4 has a superior symbiotic N2 fixation capability, and thereby is potentially high-yielding. In our previous study, Sakukei 4 was characterized by having a superior ability to maintain high leaf N content and high photosynthetic rate. The objectives of this study were to know photosynthetic characteristics of Sakukei 4 in detail, especially, the responses to CO2 concentration and light intensity, and to elucidate how the photosynthetic characteristics of Sakukei 4 are associated with the amounts of photosynthesis-related N compounds (chlorophyll and Rubisco). The three genotypes (Sakukei 4 - supernodulating cultivar derived from Enrei, Enrei - normally nodulating cultivar, En1282- non-nodulating line derived from Enrei) were grown at various N levels in this study. The CO2 exchange rate (CER) in Sakukei 4 was higher than, or equal to that in Enrei at wide ranges of CO2 concentrations (150-700 mmol mol-1) and light intensities (200-1,500 mmol m-2 s-1 PPFD). Sakukei 4 had higher leaf N (NL), chlorophyll (ChlL) and Rubisco (RubL) contents per leaf area, but lower chlorophyll and Rubisco contents per leaf N content (ChlL/NL, RubL/NL) than Enrei. The specific leaf weight (SLW) and leaf area trended to be lower in Sakukei 4 than in Enrei. These results indicate that the superior photosynthetic rate in Sakukei 4 is attributed to higher total N, chlorophyll and Rubisco contents per leaf area, but not to high rate of allocation of total N to these N compounds.

Fitting photosynthetic carbon dioxide response curves …
Photo provided by Flickr

We could use a right about now.

A key player in the Calvin cycle is ribulose-1,5-bisphosphate carboxylase oxygenase (affectionately called RuBisCo—thank goodness for nicknames), an enzyme that "fixes" CO2 to a 5-carbon compound called ribulose-1,5-bisphosphate (RuBP).

C4 photosynthesis: how some plants avoid photorespiration

Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by the abbreviations RuBisCO, RuBPCase, or RuBPco, is …
Photo provided by Flickr

Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types (PFTs) is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained "residual" nitrogen pool. Based on our analysis, crops partition the largest fraction of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73%, respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple PFTs, and report substantial differences in nitrogen allocation across different PFTs. The resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.

N2 - Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types (PFTs) is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained "residual" nitrogen pool. Based on our analysis, crops partition the largest fraction of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73%, respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple PFTs, and report substantial differences in nitrogen allocation across different PFTs. The resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.

Euglena: taxonomy, life cycle, cell anatomy and more at …

Correlation of Leaf Nitrogen, Chlorophyll and Rubisco Contents with Photosynthesis in a Supernodulating Soybean Genotype Sakukei 4
Photo provided by Flickr

AB - Nitrogen is one of the most important nutrients for plant growth and a major constituent of proteins that regulate photosynthetic and respiratory processes. However, a comprehensive global analysis of nitrogen allocation in leaves for major processes with respect to different plant functional types (PFTs) is currently lacking. This study integrated observations from global databases with photosynthesis and respiration models to determine plant-functional-type-specific allocation patterns of leaf nitrogen for photosynthesis (Rubisco, electron transport, light absorption) and respiration (growth and maintenance), and by difference from observed total leaf nitrogen, an unexplained "residual" nitrogen pool. Based on our analysis, crops partition the largest fraction of nitrogen to photosynthesis (57%) and respiration (5%) followed by herbaceous plants (44% and 4%). Tropical broadleaf evergreen trees partition the least to photosynthesis (25%) and respiration (2%) followed by needle-leaved evergreen trees (28% and 3%). In trees (especially needle-leaved evergreen and tropical broadleaf evergreen trees) a large fraction (70% and 73%, respectively) of nitrogen was not explained by photosynthetic or respiratory functions. Compared to crops and herbaceous plants, this large residual pool is hypothesized to emerge from larger investments in cell wall proteins, lipids, amino acids, nucleic acid, CO2 fixation proteins (other than Rubisco), secondary compounds, and other proteins. Our estimates are different from previous studies due to differences in methodology and assumptions used in deriving nitrogen allocation estimates. Unlike previous studies, we integrate and infer nitrogen allocation estimates across multiple PFTs, and report substantial differences in nitrogen allocation across different PFTs. The resulting pattern of nitrogen allocation provides insights on mechanisms that operate at a cellular scale within leaves, and can be integrated with ecosystem models to derive emergent properties of ecosystem productivity at local, regional, and global scales.

Immediately after RuBisCo catalyzes the attachment of the carbon from CO2 to the 5-carbon RuBP, the new 6-carbon compound is broken down into two 3-carbon compounds called phosphoglycerate (PGA, and no, it does not know how to golf).

In the last video we discovered what seems like a problem with the Calvin Cycle.
Photo provided by Flickr
Order now
  • Poales - Missouri Botanical Garden

    RuBisCO - Wikipedia

  • Agriculture | An Open Access Journal from MDPI

    Photosynthesis - Wikipedia

  • Agriculture, an international, peer-reviewed Open Access journal.

    Topics In Depth

Order now

Quantum Biology 7: Vitamin D - Jack Kruse

Photorespiration begins when RuBisCo uses O2 instead of CO2 and adds it to RuBP.

While CO2 is eventually produced in this reaction, and O2 is consumed, the reaction does not seem to produce any useful energy forms.

eucalyptus globulus oil, 8000-48-4 - The Good Scents …

Oxygenic photosynthesis uses two systems for capturing photons. The first one (called ) uses . The second one (called because it was discovered before Photosystem II) uses captured photon energy to add an electron to captured carbon dioxide to help transform it into a sugar. That “” is accomplished by the , and an enzyme called Rubisco, , catalyzes that fixation. Below is a diagram of the Calvin cycle. (Source: Wikimedia Commons)

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order